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Carbon electrodes for aluminium electrolysis are mainly made of petroleum coke (PC, accounting
for 85 wt.%). The amorphous phase of PC poses a challenge for the precise microstructure
analysis, thus hindering the development of carbon electrode preparation processes. In recent
work, we developed an intelligent lattice fringe extraction technique for amorphous carbon
materials based on high-resolution transmission electron micrographs (HRTEM) detection and
image binarization. The microstructural arrangement state and data (lattice length, orientation,
curvature, stacking, etc.) of green petroleum coke (GPC) and calcined petroleum coke (CPC) were
obtained via this integrated HRTEM analytic technique. Then the atomistic representations of
GPC and CPC incorporating actual parameters were constructed for comprehensive observation
and simulation via an automated modelling strategy. Furthermore, the microstructural
transformation pattern of GPC across the industrial calcination temperature range (25 to 1600 °C)
was explored and quantified based on a series of microstructural data at discrete temperature
stages.

Keywords: Petroleum Coke, HRTEM, Lattice Fringe, Microstructural Analysis, Atomistic
Modeling.

1. Introduction

Petroleum coke (PC) is the primary raw material for carbon electrodes in aluminum electrolysis
cells, accounting for over 85 wt.% of the electrode composition [1]. PC is categorized as an
amorphous carbon material with a complex microstructure characterized by the intertwining of
sp2 and sp3 hybridized carbon atoms, diverse ONS functional group configurations, and the
presence of hydrogen bonds [2]. Previous research has yet to provide an in-depth exploration of
such intricate microstructural characteristics.

During the preparation of carbon electrodes, green petroleum coke (GPC) undergoes a calcination
process to form calcined petroleum coke (CPC). This process involves pyrolysis, polymerization,
and reordering of the carbon structure [2]. However, the precise mechanisms governing the
microstructural evolution during calcination remain largely unexplored, representing a significant
research gap. Consequently, in industrial production, extensive manual adjustments of equipment
parameters are often required to accommodate the variations in GPC properties. It poses a
bottleneck to the intelligent manufacturing of metallurgical carbon materials and the broader
aluminum electrolysis sector. Addressing this bottleneck necessitates not only the precise
characterization of PC microstructural features at the atomic scale but also a comprehensive
understanding of the structural evolution across multiple calcination temperature stages.
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Recent advances in the analysis of carbon network chains (aromatic layers) in amorphous carbon
materials such as coal have provided new insights into the structural characteristics of such
systems. Mathews et al. [3—5] employed the Materials Studio software platform in conjunction
with high-resolution transmission electron microscopy (HRTEM) and Perl scripts such as
Fring3D and Vol3D to achieve automated modeling of coal, coke, and carbon black. Louw et al.
[6, 7] developed the Stack software based on Matlab, enabling quantitative analysis of aromatic
layer stacking configurations by controlling center-to-center distance, nearest neighbor distance,
and angular orientation. This approach allows the extraction of secondary, tertiary, quaternary,
and quinary stacking configurations, facilitating subsequent data processing and calculation.
Furthermore, Changan Wang et al. [8] investigated the curvature properties of aromatic layers in
amorphous carbon materials using the Curvature script based on Matlab, segmenting the lattice
fringes based on length and angular parameters to analyze directional layer curvature.
Simultaneously, Huang Yang [9] et al. developed Perl scripts such as Cross_link.pl to connect
aromatic layers and optimize the structural configuration of curved aromatic layers in activated
carbon.

In this study, we integrated these advanced HRTEM-based methodologies to develop a
comprehensive and intelligent lattice fringe extraction technique for carbon materials, allowing
for a detailed characterization of the microstructural features of both PC and CPC. Additionally,
we designed a customized Packmol script [10] to construct a multi-scale and visualizable model
that effectively captures the microstructural characteristics and composition of PC and CPC.
Furthermore, we investigated the evolution of PC microstructures, including lattice fringe length,
stacking, orientation, and curvature, across various calcination temperature stages. The proposed
intelligent lattice fringe extraction technique and the associated findings provide a solid
theoretical foundation for the intelligent manufacturing of metallurgical carbon materials.

2. Methods
2.1 Coke Sample

The components of GPC samples used in this work are shown in Table 1, Cokes 1, 2 and 3 being
respectively produced in Shandong Province, in Zhejiang Province, and at Tianjin Municipality,
China. The samples were ground and sieved, with the =106 um fraction selected for calcination.
Approximately 70 g of dried powder was weighed for each batch and placed into a graphite
crucible, which was then positioned at the center bottom of an alumina crucible. The remaining
space in the alumina crucible was filled with landfill material to provide an oxygen-isolated
environment during calcination. The samples were held at a setting temperature for 4 h to
complete the calcination process. The setting temperature is in the range from 298 to 1873 K. The
heating rate was set at 5 K/min below 1273 K and 3 K/min above 1273 K. The furnace model
used was KSL-1700X, manufactured by Hefei Kejing Materials Technology Co., Ltd.

Table 1. Ultimate analyses of green petroleum coke samples (wt.%).

Samples C H N S (0]

Coke 1 89.53 3.38 1.27 2.45 2.27
Coke 2 89.08 3.55 1.37 2.67 333
Coke 3 86.47 3.46 1.77 4.19 4.11
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4. Conclusions

This work presents an HRTEM analytic technique for the intelligent extraction and analysis of
lattice fringes in carbon materials, developed through the integration of HRTEM imaging, binary
image processing techniques, and customized Matlab and Perl scripts. The developed technique
enables quantitative analysis of lattice fringe characteristics such as length, stacking, orientation,
and curvature. It fills a critical gap in the precise structural analysis of aluminum electrolysis
carbon materials and applies to a broad range of studies on the microstructural evolution of
various carbon-based materials.

Representative models of PC were constructed at the molecular scale, 3D microcrystalline scale,
and 3D nanoscale. The DFT calculations were used to generate FT-IR and XRD spectra, which
confirm the aromaticity and degree of ordering in the constructed models. For the three coke
materials tested, the multi-level validation affirms the accuracy and reliability of the models.
Beyond visualizing the microstructure of calcined coke, these models also provide a robust
platform for quantitative simulations and molecular dynamics studies of various reactive
processes in metallurgical carbon materials.

The HRTEM analytical technique, in combination with mathematical fitting, was employed to
continuously and quantitatively evaluate the evolution of PC microstructures as a function of
calcination temperature. In the temperature range of 873—1873 K, the microstructural parameters
exhibit excellent agreement with Logistic regression models. Below 873 K, the structure
undergoes slight disordering, while above this threshold, a significant increase in structural
ordering is observed. Mathematical equations derived from the fitted curves enabled the reliable
prediction of key microstructural features of the three tested coke samples at any given
temperature.
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